

TARDEC

---TECHNICAL REPORT---

No._____________

By:______________________________________

Distribution:____________________________________

U.S. Army Research, Development and Engineering Command
U.S. Army Tank-automotive and Armaments Research

Development and Engineering Center
Detroit Arsenal
6501 East 11 Mile Road
Warren, Michigan 48397-5000

14386

Wesley Bylsma

Approved for public release; distribution is unlimited.

CREATION OF VIRTUAL REALITY MODELING
LANGUAGE (VRML) STATIONARY XY VIEW

DATA FROM DISPLACEMENT DATA

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 DEC 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
CREATION OF VIRTUAL REALITY MODELING LANGUAGE
(VRML) STATIONARY XY VIEW DATA FROM DISPLACEMENT
DATA

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
WESLEY BYLSMA

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US ARMY TARDEC - NATIONAL AUTOMOTIVE CENTER,ATTN:
AMSRD-TAR-N/MS157,6501 EAST 11 MILE
RD,WARREN,MI,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
14386

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A process for convert body displacement (position/orientation) data to stationary XY view data, similar to
a camera position moving in XY with the body, using the AWK programming language is presented, with
the intent of future use in scene assembly into a Virtual Reality Modeling Language (VRML) file.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.0 INTRODUCTION..1

2.0 DISPLACEMENT FORMAT ...2

3.0 VIEW FORMAT..2

4.0 VRML FORMAT...3

5.0 GAWK CONVERSION...5

5.1 INPUT ...5

5.2 PARAMETERS..5

5.3 OUTPUT ...6

5.4 CODE SECTIONS ...6

6.0 SUMMARY/CONCLUSION...6

CONTACT..6

REFERENCES...6

DEFINITIONS, ACRONYMS, ABBREVIATIONS.......................................7

APPENDIX A – DIS2Z0POS.AWK SCRIPT..9

FIGURE 1 – ESSENTIAL VRML VISUALIZATION COMPONENTS1

TABLE 1 - DISPLACEMENT FILE VARIABLE FORMAT DEFINITION
..2

TABLE 2 - VIEW FILE VARIABLE FORMAT DEFINITION2

FIGURE 2 – GAWK PROCESS...5

TABLE 3 - PARAMETER DEFINITIONS ...5

1

Technical Report 14386
December 2004

CREATION OF VIRTUAL REALITY MODELING LANGUAGE

(VRML) STATIONARY XY VIEW DATA FROM DISPLACEMENT
DATA

Wesley Bylsma

U.S. Army Research, Development and Engineering Command (RDECOM)
U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC)

National Automotive Center (NAC)
ATTN: AMSRD-TAR-N/MS157

6501 E 11 Mile Road
Warren, Michigan 48397-5000

1.0 INTRODUCTION
Visualization of complex information is one of the best ways to communicate its meaning. The focus of this effort is on the
creation of the view portion a Virtual Reality Modeling Language (VRML) file that is used to visualize ground vehicle
simulations. As Figure 1 depicts, there are five essential elements that should be included within the composite VRML file
for meaningful visualization effects. Only the view element is discussed here.

VRML

Geometry

Appearance Displacement

Parameters

View

VRML

Geometry

Appearance Displacement

Parameters

View

Figure 1 – Essential VRML Visualization Components

The view element is a generic file with the ".view" extension that contains position, orientation, and field of view
information for specified geometry parts. This report addresses the conversion process between the displacement
(".displacement") format to the generic stationary xy view (".view") format to be used with VRML. The conversion process
is accomplished with the AWK Programming Language, named after its authors (Alfred V. Aho, Brian W. Kernighan, and
Peter J. Weinberger at Bell Labs), which is designed to provide easy data manipulation and extraction of text files. In this
case the Free Software Foundation's GNU version, GAWK, is used. More conversion processes may be developed in the
future for inclusion of other view file formats. The focus of this discussion is restricted to the conversion of the
displacement format. Section 2.0 begins with a discussion of the displacement format. Section 3.0 discusses the view

2

format, section 4.0 discusses the VRML format that will be generated from the view format, and section 5.0 outlines the
GAWK conversion processes with subsections on specific topics.

2.0 DISPLACEMENT FORMAT
The displacement file is a simple ASCII file. Its format is laid out into one section encapsulated by a header and trailer
line. Below is an example ".displacement" file:

A-HA1.BOD
#NSTEPS: 2226
1.003706 0.002024 0.645516 0.000000 -0.000010 0.000889 -0.000076
1.145413 0.002060 0.647116 0.000000 -0.000004 0.001006 -0.000096
1.287602 0.002087 0.649605 0.000000 0.000001 0.000977 -0.000118
1.429893 0.002399 0.651866 0.000000 0.000015 0.000858 -0.000203
...
0.441985 0.001879 0.653466 0.000000 -0.000007 -0.000388 -0.000085
0.581939 0.001908 0.650418 0.000000 -0.000012 -0.000144 -0.000066
0.722046 0.001944 0.647421 0.000000 -0.000015 0.000231 -0.000058
0.862559 0.001985 0.645643 0.000000 -0.000013 0.000611 -0.000062
#END

The first line is a comment denoting the body name the data is for. The section begins with "#NSTEPS:" and ends with
"#END". Following the semicolon character in "#NSTEPS:" the number of time steps should be given. Each line between
the header and trailer contains displacement information for each time step. For each time step the position, orientation,
and scale can be specified. A variable format exists because displacement information may not need each of these three
components. Table 1 defines how each type is specified and what nodes are used for them (NF = number of fields in
gawk).

Table 1 - Displacement File Variable Format Definition

NF Type Nodes
>=3 Position PositionInterpolator
>=7 Position/Orientation PositionInterpolator/OrientationInterpolator
>=10 Position/Orientation/Scale PositionInterpolator/OrientationInterpolator/PositionInterpolator

The above example file contains position and orientation (NF >= 7) displacement data, but not scale data. Note that
orientation data requires position data, and scale data requires position and orientation data.

3.0 VIEW FORMAT
The view file has the same format as the displacement file, only with a few changes.. The only difference, besides some
additonal comment lines, is the content for each time step. Below is an example ".view" file:

A-TCH.BOD.view
A-TCH.BOD
#NSTEPS: 2226
0.000449236 9.488932 0.001028 0
0.000898473 9.630410 0.001040 0
0.00134771 9.772396 0.001052 0
0.00179695 9.914128 0.001065 0
...
0.998203 8.925052 0.000976 0
0.999102 9.065768 0.000988 0
0.999551 9.206738 0.000999 0
1 9.347708 0.001013 0
#END

See a description of the format as described in section 2.0. For each time step the time fraction (percentage of total time),
position, orientation, and field of view can be specified. A variable format exists because view information may not need
each of these three components. Table 2 defines how each type is specified and what nodes are used for them (NF =
number of fields in gawk).

Table 2 - View File Variable Format Definition

NF Type Nodes
>=4 Position PositionInterpolator
>=8 Position/Orientation PositionInterpolator/OrientationInterpolator
>=9 Position/Orientation/FieldOfView PositionInterpolator/OrientationInterpolator/ScalarInterpolator

3

The above example file contains position (NF >= 4) view data, but not position or field of view data. Note that orientation
data requires position data, and field of view data requires position and orientation data.

4.0 VRML FORMAT
The view data used in the VRML file [1] is included using the PositionInterpolator, OrientationInterpolator, and
ScalarInterpolator nodes as defined in ISO 14772-1:1997. A TimeSensor node and ROUTE statement are also required.
The creation of these nodes is done during final scene assembly with another program. A description is included here to
help understand where the view data is included in the final VRML scene file.

The PositionInterpolator Node template is

DEF VPx PositionInterpolator { key ... keyvalue }.

This node defines the view position. By including a name to the node definition, it can be referenced later in the ROUTE
statement which is based off the TimeSensor node to give motion. This nodes key values are sets of three floating point
numbers---x,y,z values.

The OrientationInterpolator Node template is

DEF VOx OrientationInterpolator { key ... keyvalue }

This node defines the view orientation. By including a name to the node definition, it can be referenced later in the
ROUTE statement which is also based off the TimeSensor node to give rotational motion. This nodes key values are sets
of four floating point numbers. From [2], the first three values specify a normalized rotation axis vector about which the
rotation takes place. The fourth value specifies the amount of right-handed rotation about that axis in radians. The 3x3
matrix representation of a rotation (x y z a) is

[tx2+c txy+sz txz-sy
txy-sz ty2+c tyz+sx
txz+sy tyz-sx tz2+c]

where c = cos(a), s = sin(a), and t = 1-c.

The ScalarInterpolator Node template is

DEF VFx ScalarInterpolator { key ... keyvalue }.

This node defines the field of view. By including a name to the node definition, it can be referenced later in the ROUTE
statement which is based off the TimeSensor node to give motion. This nodes key values are sets of floating point
numbers.

An example section of a VRML (.wrl) file is included below:

DEF VP9 PositionInterpolator {
 key [
0.000449,
0.000898,
0.001348,
0.001797,
...
0.998652,
0.999102,
0.999551,
1.000000,
]
 keyValue [
9.488932 0.001028 1.366876,
9.630410 0.001040 1.366850,
9.772396 0.001052 1.366749,
9.914128 0.001065 1.366520,
...
8.925052 0.000976 1.366444,
9.065768 0.000988 1.366571,
9.206738 0.000999 1.366698,
9.347708 0.001013 1.366825,
] }

4

DEF VO9 OrientationInterpolator {
 key [
0.000449,
0.000898,
0.001348,
0.001797,
...
0.998652,
0.999102,
0.999551,
1.000000,
]
 keyValue [
0.008944 0.000474 0.003410 -0.000029,
0.008944 0.000474 0.003276 -0.000024,
0.008944 0.000471 0.003212 -0.000019,
0.008944 0.000465 0.003240 -0.000016,
...
0.008944 0.000429 0.003737 -0.000027,
0.008944 0.000447 0.003771 -0.000032,
0.008944 0.000460 0.003708 -0.000034,
0.008944 0.000469 0.003573 -0.000033,
] }
DEF VF9 ScalarInterpolator {
 key [
0.000449,
0.000898,
0.001348,
0.001797,
...
0.998652,
0.999102,
0.999551,
1.000000,
]
 keyValue [
0.785398,
0.785398,
0.785398,
0.785398,
...
0.785398,
0.785398,
0.785398,
0.785398,
] }

For each interpolator node there is an associated ROUTE statement that is based on the TimeSensor node. The ROUTE
statement sets a routing path between the time change in the TimeSensor node to the interpolator node so that the view
(position, orientation, or field of view) can be looked up. This "looked up" value is then routed to a Viewpoint node that
changes the viewpoint as new values are routed to it. An example section of this part of the VRML (.wrl) file is included
below:

DEF Tic TimeSensor { cycleInterval 73.33 loop TRUE }
...
Transform { translation 0 0 0 rotation 1 0 0 -1.57 children [
 DEF TG9 Transform { children [
 DEF V9 Viewpoint { position 0.000000 -10.000000 0.000000 orientation 1.000000 0.000000 0.000000 1.570000
description "vicplsROTbbody" }
 DEF S9_1 Shape {
 geometry USE C9_P1
 appearance USE A9_1
 }
 DEF S9_2 Shape {
 geometry USE C9_P2
 appearance USE A9_2
 }
 DEF S9_3 Shape {
 geometry USE C9_P3
 appearance USE A9_3
 }
 DEF S9_4 Shape {
 geometry USE C9_P4
 appearance USE A9_4
 }

5

] }
...
] }
...
ROUTE Tic.fraction_changed TO VP9.set_fraction
ROUTE VP9.value_changed TO V9.set_position
ROUTE Tic.fraction_changed TO VO9.set_fraction
ROUTE VO9.value_changed TO V9.set_orientation
ROUTE Tic.fraction_changed TO VF9.set_fraction
ROUTE VF9.value_changed TO V9.set_fieldOfView

In the above example, the view name will be "vicplsROTbbody" in the menu of views to select.

5.0 GAWK CONVERSION
The creation of the view portion of the VRML file is done with GAWK. This is a very useful scripting language that is
available for UNIX and Windows operating systems from The Free Software Foundation
("www.gnu.org/software/gawk/gawk.html") or directly from Bell Labs ("cm.bell-labs.com/cm/cs/awkbook/"). Figure 2
outlines the AWK process.

.awk
(geo2geometry.awk)

parameters
(-v SF=“0.0254”

…)

input file
(geo.names)

Figure 2 – GAWK process

Parameters are passed to the GAWK script before it begins processing the input file. Output can be sent to the standard
output or a specified file. An example of the calling structure with the script name "dis2z0pos.awk" is given below

gawk -v SRC="./testd/" -v DES="./testd/" -f ../src/dis2z0pos.awk z0.names

5.1 INPUT
The input file is named "z0.names". Its contents are just a list of files to convert (1 column). The first column is the
displacement (".displacement") file name. An example is included below:

A-TCH.BOD
A-TLOAD.BOD

Notice that the file extension is not included in the name.

5.2 PARAMETERS
Table 3 defines and describes the parameters passed to the GAWK script for processing the displacement files. The
VRML file assumes all values are in SI units--meters for distance. Note that all parameters are passed as strings within
double quotation marks.

Table 3 - Parameter Definitions
VARIABLE DESCRIPTION EXAMPLE

SRC Source Directory. "./geo/"
DES Destination Directory. "./testd/"

It is assumed that all file names listed in the "z0.names" input file have the same extension (in the example
".displacement").

6

5.3 OUTPUT
The converted file will have the same name as in the "z0.names" file, but with a ".view" extension. This format is
discussed in section 3.0.

While it is not considered directly part of the conversion process, output of a formatted version of the "z0.names" file is
required for scene assembly as discussed in Section 1.0 and Figure 1. An example of this simple GAWK program is
given below

gawk 'BEGIN {cnt=0;}{if (substr($0,1,1)!="#"){cnt++;printf "%3d %s\n", cnt,$1;}' z0.names > V.names

The "V.names" file is used for visual inspection of the view index number to ensure proper alignment with other VRML
properties and is used in final scene assembly. An example of the "V.names" file format is given below.

 1 A-TCH.BOD
 2 A-TLOAD.BOD

5.4 CODE SECTIONS
The GAWK script "dis2z0pos.awk" is included in Appendix A. It begins with initializing variables. The position data for
each displacement file is read in and written to each view file with the same name excluding the z data which is set to
zero. Processing for each file name is as follows:

1. Set input (displacement) and output (view) file names
2. Find displacement file Header
3. Read position data (x,y,z) from displacement file
4. Wite position data (x,y,0) to view file
5. Write end of section marker to view file

6.0 SUMMARY/CONCLUSION
A simple script based conversion process between displacement and view format was described for use in scene
assembly of VRML files. It should be noted that the scene assembly portion mentioned in section 1.0 could be done with
X3D [2]. Currently, however, many advanced utilities, such as Cortona Movie Maker [3] will only work with VRML and
therefore is the focus at this time.

Future view creation scripts will include orientation and field of view with the position data.

CONTACT
The author is an engineer with the U.S. Army Research, Development and Engineering Command (RDECOM), located at
the U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC). Interested
parties can contact the author at the U.S. Army Tank-automotive and Armaments Research, Development and
Engineering Center (TARDEC), ATTN: AMSRD-TAR-N/MS157, 6501 E 11 Mile Rd., Warren, Michigan 48397-5000,
email: “bylsmaw@tacom.army.mil”.

REFERENCES
[1] The Virtual Reality Modeling Language (VRML), ISO/IEC 14772-1:1997 and 14772-2:2002, "www.web3d.org". (The

Virtual Reality Modeling Language consists of two parts. Part 1 (ISO/IEC 14772-1) defines the base functionality and
text encoding for VRML. Part 2 (ISO/IEC FDIS 14772-2) defines the base functionality and all bindings for the VRML
External Authoring Interface).

[2] X3D, ISO/IEC Draft 19776-1:200x, 19776-2:200x, 19777:200x, "www.web3d.org". (X3D encodings — ISO/IEC FDIS

(Final Draft International Standard) 19776-1:200x (XML encoding) (.html) (.zip 220KB) 2004-09-26 Specifies the
encoding of X3D files using the Extensible Markup Language (XML). X3D encodings — ISO/IEC FDIS (Final Draft
International Standard) 19776-2:200x (Classic VRML encoding) (.html) (.zip 90KB) 2004-07-21 Specifies the encoding
of the functionality and constructs defined in X3D using Classic VRML encoding. X3D language bindings — ISO/IEC
FCD (Final Committee Draft) 19777:200x (.html) (.zip 143KB) 2003-05-15 Specifies the binding of the services in the
X3D architecture to the ECMAScript programming language for use in X3D internal representation (Script nodes) and
for external application access Specifies the binding of the services in the X3D architecture to the Java programming
language for use in X3D internal representation (Script nodes) and for external application access).

[3] Parallelgraphics, Inc. "www.parallelgraphics.com".

7

DEFINITIONS, ACRONYMS, ABBREVIATIONS
RDECOM – U.S. Army Research, Development and Engineering Center
TACOM - U.S. Army Tank-automotive and Armaments Command
TARDEC - TACOM Research, Development and Engineering Center
NAC - National Automotive Center
DADS - Dynamic Analysis and Design System
DIVA - DADS Interactive Visualizer

8

9

APPENDIX A – DIS2Z0POS.AWK SCRIPT

dis2z0pos.awk

-v SRC="./testd/"
-v DES=".testd/"

BEGIN {
 cNSTEPS = "#NSTEPS:"
 cEND = "#END";
 mcnt = 0;
}
{
 fi = SRC""$1".displacement";
 fo = DES""$1".view";
 print "Processing ",fi,"->",fo;
 print "#",$1".view" > fo;
 while (err = getline < fi > 0)
 {
 print $0 >> fo
 if (substr($0,1,length(cNSTEPS)) == cNSTEPS)
 {
 nsteps = $2;
 cnt = 0;
 while (err = getline < fi>0 && substr($0,1,length(cEND)) != cEND)
 {
 cnt++;
 x[cnt] = $1;
 y[cnt] = $2;
 z[cnt] = $3;
 print cnt/nsteps, x[cnt], y[cnt], 0.0 >> fo;
 }
 print "#END" >> fo;
 }
 print "Done Reading",fi;
 }
 close(fi);
}

